ACKNOWLEDGEMENTS

I want to sincerely thank everyone who helped me finish this thesis. First and foremost, I want to express my thanks to my supervisors, Prof. Tsukasa Ohba and Prof. Euis Tintin Yuningsih, who patiently provided ongoing guidance and supervision for the project and made time for numerous discussions with me. I thank Yumi Hayakawa of Akita University for her ongoing technical assistance. I owe a debt of gratitude to the residents of Mekarsari village and the personnel of PT Istaka Karya, especially those whose help made the field observation at Gede Salak secure and feasible. I want to thank my coworkers at the Petrology and Volcanology Laboratory for including me in discussions about the study. Last but not least, I would want to express my gratitude to my friends in Akita who periodically take me out to unwind and relax after a long day of research. Sincerely, I dedicate this thesis to my parents, who never fail to show me love, support, and motivation.

> Bandung, May 24, 2023 Author,

Muhammad Alfath Salvano Salni

TABLES OF CONTENTS

ABSTRACT iv
ACKNOWLEDGEMENTS vi
TABLES OF CONTENTS vii
TABLES OF FIGURES x
LIST OF TABLES xiv
LIST OF APPENDICES xv
CHAPTER 1 INTRODUCTION 1
1.1. Background1
1.2. Aims and objective
1.3. Thesis structure
CHAPTER 2 LITERATURE REVIEW 4
2.1. Geotectonic setting
2.2. Geology of Gede Salak volcano
2.3. Research Framework 10
2.3.1. Magma evolution of subduction arc volcano
2.3.2. Magma plumbing system 12
CHAPTER 3 METHODOLOGY 14
3.1. Morphological analysis and field investigation
3.2. Petrography
3.3. X-Ray Fluorescence (XRF) 16
3.4. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

3.5. Electr	ron Probe Micro Analyzer (EPMA)	18
3.6. Geoth	nermobarometry	19
3.6.1.	Plagioclase-hornblende thermobarometer	19
3.6.2.	Single amphibole thermobarometer	20
3.6.3.	Clinopyroxene-orthopyroxene (two pyroxene pairs)	
	thermobarometer	20
3.6.4.	Clinopyroxene-melt thermobarometer	21
3.7. Depth	n calculation	21
CHAPTER	4 RESULTS	23
4.1. The V	Volcanism of Gede Salak volcano	23
4.2. Geoc	hemistry	29
4.2.1.	SiO ₂ contents and classification	29
4.2.2.	Major and trace elements variation	31
4.2.3.	N-MORB Normalized Incompatible Trace Elements	35
4.2.4.	Chondrite-normalized Rare-Earth Elements (REE)	36
4.3. Petro	graphy	38
4.3.1.	Lava flow and peripheral dome	38
4.3.2.	Summit dome	39
4.4. Mine	ral chemistry	40
4.4.1.	Plagioclase	40
4.4.2.	Pyroxenes	45
4.4.3.	Amphibole	50
CHAPTER	5 DISCUSSION	53

APPENDICES	83
REFERENCES	74
6.2. Suggestion	73
6.1. Conclusion	72
CHAPTER 6 CONCLUSION AND SUGGESTION	72
5.5. Magma plumbing and evolution system	66
5.4. Origin of phenocrysts	62
5.3.3. The implication of amphibole breakdown feature	60
5.3.2. The implications of texture and zoning in pyroxene	60
5.3.1. The implications of texture and zoning in plagioclase	58
5.3. Mineral texture implication	58
5.2. Assimilation and mixing	55
5.1. Fractional crystallization	53

TABLES OF FIGURES

Figure 2.1. Map of the Indonesian subduction system showing the general tectonic setting (Hamilton, 1973) and distribution of volcanoes (Siebert et al., 2010).......5 Figure 2.2. Tectonic reconstruction of the main continental blocks in SE Asia Figure 2.3. Tectonic setting and location map of the Sunda Strait and its associated volcano and faults distribution (Schlüter et al., 2002; Susilohadi et al., 2009). 7 Figure 2.4. Subduction slab morphology within Sunda Strait based on the model of Figure 2.5. Volcanic rock and fault distribution of Gede Salak volcano (Rusmana et al., 1991; Widagdo et al., 2021). 10 Figure 2.6. Simplified illustration of most commonly cited components in a Figure 2.7. Schematic section of igneous plumbing system from the mantle to the Figure 4.1. Morphology of Gede Salak Volcano viewed from Kedepel lava dome Figure 4.2. Geological Map of Gede Salak Volcano modified from Kurniawan et al.

Figure 4.3. (a) Massive andesite lava in Salak lava, (b) Prismatic joint found in andesite outcrop of Batu lava, (c) Platy joint developed in andesite outcrop of Gede lava, and (d) Blocky scoriaceous lava clinker at the peak of Batu lava flow. 26 Figure 4.4. (a) Debris avalanche deposit, (b) The Lahar deposit, and (c) The contact Figure 4.5. (a) One of the small peripheral lava domes, (b) an outcrop of Wadas dome displaying platy joints, (c) an outcrop of Peda lava dome with prismatic joints, Figure 4.6. (a) Plots of sample in TAS diagram (Le Bas et al., 1986) with the boundary of alkali to sub-alkaline rock (Irvine and Baragar, 1971), (b) Rock series of tholeiitic and calc-alkaline utilizing plots of SiO2 vs. FeO*/MgO (Miyashiro, 1974), (c) Ternary diagram of AFM (Irvine and Baragar, 1971), and (d) Magma Figure 4.7. Variation diagrams of SiO₂ against major elements of Gede Salak Figure 4.8. Variation diagrams of SiO₂ against selected LILE and HFSE of Gede Figure 4.9. N-MORB normalized multi-element diagrams of Gede Salak samples. Figure 4.10. Chondrite normalized REE diagrams of Gede Salak volcano....... 37 Figure 4.11. Representative crossed polar microphotographs of (a) patchy core with multiple dissolution-overgrowth, (b) coarse sieved core with melt inclusion, (c) clear plagioclase with a resorbed surface, (d) glomerocryst, (e) oscillatory zoned

pyroxene, (f) rounded orthopyroxene mantled by clinopyroxene, (g) clinopyroxene
with spongy texture rim, (h) amphibole with volumetric decomposition, and (i)
clear amphibole and plagioclase aggregate
Figure 4.12. The distribution of composition in rim and core of plagioclase 43
Figure 4.13. Representative BSE image and profile of typical plagioclase texture
and zoning
Figure 4.14. Distribution of clinopyroxene core and rim composition and its
relationship. Ranges of composition in equilibrium with each whole rock
composition have been calculated utilizing $^{\text{Fe-Mg}}K_{\text{Dmin/liq}}$ values of 0.23-0.30 (Sisson
and Grove, 1993)
Figure 4.15. Distribution of orthopyroxene core and rim composition and its
relationship. Ranges of composition in equilibrium with each whole rock
composition have been calculated utilizing ${}^{\text{Fe-Mg}}K_{\text{Dmin/liq}}$ values of 0.23-0.35
(Putirka, 2008)
Figure 4.16. Representative BSE image and profile of pyroxene type 1, 2 and 3.49
Figure 4.17. (a) Type 4 pyroxene displays a dusty rim, (b) Dusty rim restricted to
part of glomerocryst that comes in contact with melt, (c) Type 5 pyroxene shows
symplectite texture, and (d) Xenocryst showing the aggregate of symplectite texture.
Figure 4.18. Distribution of amphibole core and rim composition and its
relationship. Ranges of composition in equilibrium with each whole rock
composition have been calculated utilizing Fe-MgKDmin/liq values of 0.17-0.39
(Putirka, 2016)

Figure 4.19. (a) Unrimmed amphibole displaying irregular decomposition, (b)
Symplectite rim in amphibole showing zonation, (c) Irregular decomposition
occupying fracture and mineral contact, and (d) Aligned decomposition occupying
inner part of the amphibole
Figure 5.1. Amphibole fractionation effect on (a) K/Rb, (b) Zr/Hf, (c) Nb/Ta, (d)
Sr/Y, (e) La/Yb, and (f) Dy/Yb vs. SiO2. The schematic inset shows expected
fractionation effects (Davidson et al., 2007)55
Figure 5.2. Indicator of mixing in whole rock and phenocryst composition. Two
linear trends indicate mixing in (a) Ta, (b) Mg, and (c) Nb vs. SiO2. The
combination of (d) K/Rb vs. Rb and phenocryst composition suggests the
occurrence of magma mixing 57
Figure 5.3. The origin of phenocrysts is deduced from the compositional
equilibrium among series. The bar below represents the scale of anorthite content
and magnesium number
Figure 5.4. Schematic illustration of the magma plumbing system beneath Gede
Salak volcano based on thermobarometry calculation. It shows that the primary
magma storage is at the mid-crustal level, while only mafic magma resides in the
lower-crustal level
Figure 5.5. The comparison of magma storage of several volcanoes in Sunda Arc.

LIST OF TABLES

Table 3.1. The respective depth and estimated densities of crustal rock	layers
beneath the Gede Salak volcano.	22
Table 4.1. The mineral assemblage of representative samples based on 100	0-point
counting	38
Table 5.1. Geothermobarometer calculation results for Gede Salak volcano.	Values
of temperature and pressure are given as average and range	67

LIST OF APPENDICES

Appendix A. Location of samples	83
Appendix B. Whole-rock chemistry data	85
Appendix C. Mineral chemistry data	88