MODEL CLUSTERING GSTARI-ARCH DAN PENERAPANNYA PADA DATA TERKONFIRMASI POSITIF COVID-19 DI JAWA BARAT
No Thumbnail Available
Date
2021-03-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Deret waktu merupakan proses stokastik yang diberi indeks waktu secara simultan. Model deret waktu yang digunakan pada penelitian ini adalah model deret waktu basis Box-Jenkins. Model deret waktu dapat dikombinasikan dengan data spasial yang menghasilkan proses stokastik dengan indeks lokasi waktu secara simultan. Salah satu model berbasis model Box-Jenkins dengan karakteristik lokasi yang heterogen adalah Model Generalized Space Time Autoregressive (GSTAR) untuk model dengan asumsi data stasioner dan model Generalized Space Time Autoregressive Integrated (GSTARI) untuk data yang tidak stasioner, khususnya untuk data yang memiliki pola trend. Dalam penelitian ini dipelajari pengembangan model GSTARI dengan asumsi variansi eror tidak konstan. Salah satu contoh data dengan variansi eror tidak konstan adalah data terkonfirmasi positif Covid-19 di Provinsi Jawa Barat. Fenomena data terkonfirmasi positif Covid-19 di Jawa Barat juga dikelompokkan menjadi zona merah, kuning dan hijau untuk menggambarkan banyaknya penderita positif Covid-19 dalam kelompok tinggi, sedang dan rendah. Metode penaksiran parameter untuk asumsi unsur eror tidak konstan dapat digunakan metode Autoregresive Conditional Heteroscedasticity (ARCH). Oleh karena itu, penelitian ini membahas Analisis Clustering dan Model GSTARI dengan asumsi variansi eror tidak konstan yang dinamakan dengan Model Clustering Generalized Space Time Autorgressive-Autoregresive Conditional Heteroscedasticity atau dapat disingkat dengan Model Clustering GSTARI-ARCH. Tahapan-tahapan dalam memodelkan Clustering GSTARI-ARCH dibagi menjadi dua yaitu tahap Analisis Cluster hingga terbentuk 3 cluster tinggi, sedang, rendah, dilanjutkan dengan tahap peramalan model GSTARI-ARCH yang mengikuti 3 tahapan deret waktu Box-Jenkins. Tiga tahap deret waktu Box-Jenkins berupa identifikasi model, estimasi parameter hingga pengecekan diagnostik. Penerapan Model Clustering GSTARI-ARCH pada data terkonfirmasi Covid-19 menghasilkan RMSE yang minimum pada Cluster tinggi dibandingkan dengan Cluster lainnya. Hal ini menunjukkan bahwa plot data pada cluster tinggi hampir mendekati plot data aktualnya. Plot ramalan pada semua cluster memiliki kemiripan dengan data aktual hanya untuk waktu jangka pendek yaitu selama 1-2 hari.
Description
Keywords
ARCH, Clustering, GSTARI